Exercise 14

A series circuit contains a resistor with $R=24 \Omega$, an inductor with $L=2 \mathrm{H}$, a capacitor with $C=0.005 \mathrm{~F}$, and a $12-\mathrm{V}$ battery. The initial charge is $Q=0.001 \mathrm{C}$ and the initial current is 0 .
(a) Find the charge and current at time t.
(b) Graph the charge and current functions.

Solution

The equation for the charge in a circuit consisting of an inductor, a resistor, and a capacitor in series with a battery is given by

$$
L \frac{d^{2} Q}{d t^{2}}+R \frac{d Q}{d t}+\frac{1}{C} Q=V
$$

The initial conditions associated with this ODE are $Q(0)=0.001$ and $Q^{\prime}(0)=0$. Because the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
Q=Q_{c}+Q_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
L \frac{d^{2} Q_{c}}{d t^{2}}+R \frac{d Q_{c}}{d t}+\frac{1}{C} Q_{c}=0 \tag{1}
\end{equation*}
$$

Because this ODE is homogeneous and has constant coefficients, it has solutions of the form $Q_{c}=e^{r t}$.

$$
Q_{c}=e^{r t} \quad \rightarrow \quad \frac{d Q_{c}}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} Q_{c}}{d t^{2}}=r^{2} e^{r t}
$$

Substitute these formulas into equation (1).

$$
L\left(r^{2} e^{r t}\right)+R\left(r e^{r t}\right)+\frac{1}{C}\left(e^{r t}\right)=0
$$

Divide both sides by $e^{r t}$.

$$
L r^{2}+R r+\frac{1}{C}=0
$$

Multiply both sides by C.

$$
L C r^{2}+R C r+1=0
$$

Solve for r, noting that $R^{2} C^{2}-4 L C<0$.

$$
\begin{gathered}
r=\frac{-R C \pm i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} \\
r=\left\{\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}, \frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C}\right\}
\end{gathered}
$$

Two solutions to the ODE are

$$
\exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \quad \text { and } \quad \exp \left(\frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) .
$$

According to the principle of superposition, the general solution to equation (1) is a linear combination of these two.

$$
\begin{aligned}
& Q_{c}(t)=C_{1} \exp \left(\frac{-R C-i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(\frac{-R C+i \sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& =C_{1} \exp \left(-\frac{R}{2 L} t\right) \exp \left(-i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(-\frac{R}{2 L} t\right) \exp \left(i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1} \exp \left(-i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C_{2} \exp \left(i \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[C_{1}\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t-i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right. \\
& \left.+C_{2}\left(\cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+i \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left[\left(C_{1}+C_{2}\right) \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\left(-i C_{1}+i C_{2}\right) \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right] \\
& =\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
L \frac{d^{2} Q_{p}}{d t^{2}}+R \frac{d Q_{p}}{d t}+\frac{1}{C} Q_{p}=V \tag{2}
\end{equation*}
$$

The inhomogeneous term is a polynomial of degree 0 , so the trial solution is $Q_{p}=A$.

$$
Q_{p}=A \quad \rightarrow \quad \frac{d Q_{p}}{d t}=0 \quad \rightarrow \quad \frac{d^{2} Q_{p}}{d t^{2}}=0
$$

Substitute these formulas into equation (2).

$$
L(0)+R(0)+\frac{1}{C}(A)=V
$$

Solve for A.

$$
A=C V
$$

The particular solution is then

$$
Q_{p}=C V,
$$

and the general solution to the original ODE is

$$
\begin{aligned}
Q(t) & =Q_{c}+Q_{p} \\
& =\exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)+C V .
\end{aligned}
$$

Differentiate it with respect to t.

$$
\begin{aligned}
& \frac{d Q}{d t}=-\frac{R}{2 L} \exp \left(-\frac{R}{2 L} t\right)\left(C_{3} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+C_{4} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right) \\
& +\exp \left(-\frac{R}{2 L} t\right)\left(-C_{3} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right. \\
& \left.\quad+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right)
\end{aligned}
$$

Apply the initial conditions to determine C_{3} and C_{4}.

$$
\begin{aligned}
Q(0) & =C_{3}+C V=0.001 \\
\frac{d Q}{d t}(0) & =-\frac{R}{2 L} C_{3}+C_{4} \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C}=0
\end{aligned}
$$

Solving this system yields

$$
C_{3}=0.001-C V \quad \text { and } \quad C_{4}=\frac{R C(0.001-C V)}{\sqrt{4 L C-R^{2} C^{2}}} .
$$

Therefore,
$Q(t)=\exp \left(-\frac{R}{2 L} t\right)\left[(0.001-C V) \cos \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t+\frac{R C(0.001-C V)}{\sqrt{4 L C-R^{2} C^{2}}} \sin \frac{\sqrt{4 L C-R^{2} C^{2}}}{2 L C} t\right]+C V$.
Plug in $R=24 \Omega, L=2 \mathrm{H}, C=0.005 \mathrm{~F}$, and $V=12 \mathrm{~V}$.

$$
Q(t)=e^{-6 t}(-0.059 \cos 8 t-0.04425 \sin 8 t)+0.06
$$

Differentiate this with respect to t to get the current.

$$
\begin{aligned}
I(t)=\frac{d Q}{d t} & =-6 e^{-6 t}(-0.059 \cos 8 t-0.04425 \sin 8 t)+e^{-6 t}(0.472 \sin 8 t-0.354 \cos 8 t) \\
& =0.7375 e^{-6 t} \sin 8 t
\end{aligned}
$$

Below is a plot of the charge versus time.

Below is a plot of the current versus time.

